| Composition | gram |
|---|---|
| Fat | 0.0 |
| Carbohydrate | 75.3 |
| Protein | 3.3 |
| Dietary fibre | 5.0 |
| Alcohol | 0.0 |
| Water | 16.0 |
| Energy content | energiprosent |
|---|---|
| Fat | 0 |
| Carbohydrate | 93 |
| Protein | 4 |
| Dietary fibre | 3 |
| Alcohol | 0 |
| Nutrient | Source | Quantity | Energiprosent |
|---|---|---|---|
| Fat | 0% | ||
| Carbohydrate | 93% | ||
| Dietary fibre | 2% | ||
| Protein | 4% | ||
| Alcohol | 0% | ||
| Water | - |
| Carbohydrate | Source | 75.3 g |
|---|---|---|
| Starch | ||
| Sugar, total | ||
| Sugar, added | ||
| Sugar, free |
| Fat | Source | 0 g |
|---|---|---|
| Saturated fatty acids | ||
| Trans fatty acids | ||
| Monounsaturated fatty acids | ||
| Polyunsaturated fatty acids | ||
| Omega-3 | ||
| Omega-6 | ||
| Cholesterol |
| Saturated fatty acids | Source | 0 g |
|---|---|---|
| C12:0 (lauric acid) | ||
| C14:0 (myristic acid) | ||
| C16:0 (palmitic acid) | ||
| C18:0 (stearic acid) |
| Monounsaturated fatty acids | Source | 0 g |
|---|---|---|
| C16:1 sum (palmitoleic acid) | ||
| C18:1 sum (oleic acid) |
| Fat-soluble vitamins | Source | Quantity | |
|---|---|---|---|
| Vitamin A (RAE) | |||
| Vitamin A (RE) | 0 RE | 0 % | |
| Retinol | |||
| Beta-carotene | |||
| Vitamin D | 0 % | ||
| Vitamin E | 2 % |
| Minerals | Source | Quantity | |
|---|---|---|---|
| Salt (NaCl) | |||
| Calcium (Ca) | 6 % | ||
| Sodium (Na) | |||
| Potassium (K) | 25 % | ||
| Magnesium (Mg) | 11 % | ||
| Phosphorus (P) | 19 % |
| Trace elements | Source | Quantity | |
|---|---|---|---|
| Iron (Fe) | 17 % | ||
| Zinc (Zn) | 1 % | ||
| Selenium (Se) | 22 % | ||
| Copper (Cu) | 36 % | ||
| Iodine (I) | 0 % |
Food ID: 06.549
The foods in Matvaretabellen are described using a classification system called LanguaL. LanguaL stands for "Langua aLimentaria" or "language of food". This language enables standardized descriptions of foods.
| LanguaL | Classification |
|---|---|
| A0143 | Fruit or fruit product (US CFR) |
| A0834 | Processed fruit product (EUROFIR) |
| B1329 | Grape |
| C0137 | Fruit, peel present |
| E0150 | Whole, natural shape |
| F0001 | Extent of heat treatment not known |
| G0003 | Cooking method not applicable |
| H0138 | Water removed |
| J0116 | Dehydrated or dried |
| K0003 | No packing medium used |
| M0001 | Container or wrapping not known |
| N0001 | Food contact surface not known |
| P0024 | Human consumer, no age specification |
Missing value, content not known.
Estimated as a naturally occurring zero value, not analysed.
Norwegian Food Safety Authority. Nutrient analysis 2022. Plant-based products used as cheese and ham, mackerel in tomato sauce, cod liver oil, pepperoni and dried fruit. Published report (2022): "Analyse av næringsstoffer og uønskede stoffer i vegan- og fiskepålegg, tran, pepperoni og tørket frukt". mattilsynet-xp7prod.enonic.cloud %20tran, %20pepperoni%20og%20t%C3%B8rket%20frukt%202022.pdf
Frydenberg, H, Urke EB & Carlsen MH. Sugar project 2021-2024. University of Oslo, department of nutrition.
Aggregated value from several food items
Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0)
Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g])
Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g])
Vitamin A activity calculated from retinol and beta-carotene (factor 1/6) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 6))
Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12))
Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60)
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | High-performance liquid chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | High-performance liquid chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Fatty acids, total cis n-3 polyunsaturated, calculated as sum of cis n-3 polyunsaturated fatty acids |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | High-performance liquid chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Imputed/estimated, generic |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | High-performance liquid chromatography |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g]) |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Fatty acids, total cis n-6 polyunsaturated, calculated as the sum cis n-6 polyunsaturated fatty acids |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0) |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g]) |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60) |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Calculation method |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12)) |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Aggregation of contributing values |
| Method | Gas chromatography |