| Composition | gram |
|---|---|
| Fat | 0.4 |
| Carbohydrate | 0.0 |
| Protein | 7.8 |
| Dietary fibre | 0.0 |
| Alcohol | 0.0 |
| Water | 92.0 |
| Energy content | energiprosent |
|---|---|
| Fat | 10 |
| Carbohydrate | 0 |
| Protein | 90 |
| Dietary fibre | 0 |
| Alcohol | 0 |
| Nutrient | Source | Quantity | Energiprosent |
|---|---|---|---|
| Fat | 10% | ||
| Carbohydrate | 0% | ||
| Dietary fibre | 0% | ||
| Protein | 89% | ||
| Alcohol | 0% | ||
| Water | - |
| Carbohydrate | Source | 0 g |
|---|---|---|
| Starch | ||
| Sugar, total | ||
| Sugar, added | ||
| Sugar, free |
| Fat | Source | 0.4 g |
|---|---|---|
| Saturated fatty acids | ||
| Trans fatty acids | ||
| Monounsaturated fatty acids | ||
| Polyunsaturated fatty acids | ||
| Omega-3 | ||
| Omega-6 | ||
| Cholesterol |
| Saturated fatty acids | Source | 0 g |
|---|---|---|
| C12:0 (lauric acid) | ||
| C14:0 (myristic acid) | ||
| C16:0 (palmitic acid) | ||
| C18:0 (stearic acid) |
| Monounsaturated fatty acids | Source | 0 g |
|---|---|---|
| C16:1 sum (palmitoleic acid) | ||
| C18:1 sum (oleic acid) |
| Fat-soluble vitamins | Source | Quantity | |
|---|---|---|---|
| Vitamin A (RAE) | |||
| Vitamin A (RE) | 4 RE | 0 % | |
| Retinol | |||
| Beta-carotene | |||
| Vitamin D | 3 % | ||
| Vitamin E | 7 % |
| Minerals | Source | Quantity | |
|---|---|---|---|
| Salt (NaCl) | |||
| Calcium (Ca) | 0 % | ||
| Sodium (Na) | |||
| Potassium (K) | 2 % | ||
| Magnesium (Mg) | 4 % | ||
| Phosphorus (P) | 77 % |
| Trace elements | Source | Quantity | |
|---|---|---|---|
| Iron (Fe) | 1 % | ||
| Zinc (Zn) | 5 % | ||
| Selenium (Se) | 8 % | ||
| Copper (Cu) | 11 % | ||
| Iodine (I) | 2 % |
Food ID: 04.114
Scientific name: Pecten maximus (Linnaeus, 1758)
The foods in Matvaretabellen are described using a classification system called LanguaL. LanguaL stands for "Langua aLimentaria" or "language of food". This language enables standardized descriptions of foods.
| LanguaL | Classification |
|---|---|
| A0267 | Seafood or seafood product (US CFR) |
| A0802 | Fish or related organism (EUROFIR) |
| B1489 | Scallop |
| C0125 | Skeletal meat part, without bone or shell |
| E0150 | Whole, natural shape |
| F0003 | Not heat-treated |
| G0003 | Cooking method not applicable |
| H0003 | No treatment applied |
| J0142 | Preserved by chilling or freezing |
| K0003 | No packing medium used |
| M0001 | Container or wrapping not known |
| N0001 | Food contact surface not known |
| P0024 | Human consumer, no age specification |
Missing value, content not known.
Estimated as a naturally occurring zero value, not analysed.
Estimated value. Due to value falling in between the limit of detection and the limit of quantification, the value is estimated to be half of the limit of quantification.
Norwegian Seafood Export Council, Directorate for Fisheries, Fresh Fish Sales Association, Information Council for Fish and Norwegian National Council for Nutrition. Facts about fish. Tromsø, 1993.
Directorate of Fisheries, Institute of Nutrition. Analytical data for Norwegian salmon 1997-99 and shellfish 1991. Internal notes.
Reksten, AM, Wiech, M, Aakre, I, Markhus, MW, Nøstbakken, OJ, Hannisdal, R, Madsen, L, Dahl, L. Exploring the nutrient composition of various shellfish available in Norway and their role in providing key nutrients. Journal of Food Composition and Analysis, 128 (2024). doi.org
Swedish National Food Agency. The food database, version 2015.03.09.
US Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 28 (2015). Nutrient Data Laboratory Home Page
Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0)
Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g])
Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g])
Fatty acids, monounsaturated, calculated as sum of individual fatty acids, cis isomers only (FAMSCIS[g] =F10:1CIS[g] +F12:1CIS[g] +F14:1CIS[g] + F15:1CN8[g] + F16:1CIS[g] + F17:1CIS[g] + F18:1CIS[g] + F20:1CIS[g] + F22:1CIS[g] + F24:1CIS[g])
Fatty acids, polyunsaturated, calculated as sum of individual fatty acids, all-cis isomers only (FAPUCIS[g] = F16:2CN4[g] + F16:3CN3[g] + F18:2CN6[g] + F18:2CN9[g] + F18:3CN3[g] + F18:3CN6[g] + F18:4CN3[g] + F20:2CN6[g] + F20:3CN3[g] + F20:3CN6[g] + F20:3CN9[g] + F20:4CN3[g] + F20:4CN6[g] + F20:5CN3[g] + F22:2CN3[g] + F22:2CN6[g] + F22:4CN6[g] + F22:5CN3[g] + F22:5CN6[g] + F22:6CN3[g] + F24:2CN6[g])
Vitamin A activity calculated from retinol and beta-carotene (factor 1/6) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 6))
Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12))
Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60)
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Fatty acids, polyunsaturated, calculated as sum of individual fatty acids, all-cis isomers only (FAPUCIS[g] = F16:2CN4[g] + F16:3CN3[g] + F18:2CN6[g] + F18:2CN9[g] + F18:3CN3[g] + F18:3CN6[g] + F18:4CN3[g] + F20:2CN6[g] + F20:3CN3[g] + F20:3CN6[g] + F20:3CN9[g] + F20:4CN3[g] + F20:4CN6[g] + F20:5CN3[g] + F22:2CN3[g] + F22:2CN6[g] + F22:4CN6[g] + F22:5CN3[g] + F22:5CN6[g] + F22:6CN3[g] + F24:2CN6[g]) |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Below limit of detection |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Best estimate |
| Acquisition type | Food composition table |
| Method type | Method type not known |
| Method | Method not known |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Best estimate |
| Acquisition type | Food composition table |
| Method type | Method type not known |
| Method | Method not known |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12)) |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g]) |
| Value type | Best estimate |
| Acquisition type | Independent laboratory |
| Method type | Analytical, generic |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Fatty acids, total cis n-6 polyunsaturated, calculated as the sum cis n-6 polyunsaturated fatty acids |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0) |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Best estimate |
| Acquisition type | Scientific communication |
| Method type | Method type not known |
| Method | Method not known |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Fatty acids, total cis n-3 polyunsaturated, calculated as sum of cis n-3 polyunsaturated fatty acids |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g]) |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Fatty acids, monounsaturated, calculated as sum of individual fatty acids, cis isomers only (FAMSCIS[g] =F10:1CIS[g] +F12:1CIS[g] +F14:1CIS[g] + F15:1CN8[g] + F16:1CIS[g] + F17:1CIS[g] + F18:1CIS[g] + F20:1CIS[g] + F22:1CIS[g] + F24:1CIS[g]) |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60) |
| Value type | Mean |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |