| Composition | gram |
|---|---|
| Fat | 0.0 |
| Carbohydrate | 9.6 |
| Protein | 0.0 |
| Dietary fibre | 0.0 |
| Alcohol | 0.0 |
| Water | 90.0 |
| Energy content | energiprosent |
|---|---|
| Fat | 0 |
| Carbohydrate | 100 |
| Protein | 0 |
| Dietary fibre | 0 |
| Alcohol | 0 |
| Nutrient | Source | Quantity | Energiprosent |
|---|---|---|---|
| Fat | 0% | ||
| Carbohydrate | 100% | ||
| Dietary fibre | 0% | ||
| Protein | 0% | ||
| Alcohol | 0% | ||
| Water | - |
| Carbohydrate | Source | 9.6 g |
|---|---|---|
| Starch | ||
| Sugar, total | ||
| Sugar, added | ||
| Sugar, free |
| Fat | Source | 0 g |
|---|---|---|
| Saturated fatty acids | ||
| Trans fatty acids | ||
| Monounsaturated fatty acids | ||
| Polyunsaturated fatty acids | ||
| Omega-3 | ||
| Omega-6 | ||
| Cholesterol |
| Saturated fatty acids | Source | 0 g |
|---|---|---|
| C12:0 (lauric acid) | ||
| C14:0 (myristic acid) | ||
| C16:0 (palmitic acid) | ||
| C18:0 (stearic acid) |
| Monounsaturated fatty acids | Source | 0 g |
|---|---|---|
| C16:1 sum (palmitoleic acid) | ||
| C18:1 sum (oleic acid) |
| Fat-soluble vitamins | Source | Quantity | |
|---|---|---|---|
| Vitamin A (RAE) | |||
| Vitamin A (RE) | 0 RE | 0 % | |
| Retinol | |||
| Beta-carotene | |||
| Vitamin D | 0 % | ||
| Vitamin E | 0 % |
| Minerals | Source | Quantity | |
|---|---|---|---|
| Salt (NaCl) | |||
| Calcium (Ca) | 0 % | ||
| Sodium (Na) | |||
| Potassium (K) | 0 % | ||
| Magnesium (Mg) | 0 % | ||
| Phosphorus (P) | 0 % |
| Trace elements | Source | Quantity | |
|---|---|---|---|
| Iron (Fe) | 0 % | ||
| Zinc (Zn) | 0 % | ||
| Selenium (Se) | 0 % | ||
| Copper (Cu) | 0 % | ||
| Iodine (I) | 0 % |
Food ID: 13.046
| Facets | |
|---|---|
| F18 Packaging-format | Bottle (A07NM) |
| F19 Packaging-material | Plastic (A07PR) |
The foods in Matvaretabellen are described using a classification system called LanguaL. LanguaL stands for "Langua aLimentaria" or "language of food". This language enables standardized descriptions of foods.
| LanguaL | Classification |
|---|---|
| A0241 | Soft drink (US CFR) |
| A0843 | Soft drink (EUROFIR) |
| B1217 | Water |
| C0005 | Part of plant or animal not applicable |
| E0123 | Liquid, low viscosity, with no visible particles |
| F0022 | Heat-treated |
| G0003 | Cooking method not applicable |
| H0117 | Flavoring or taste ingredient added |
| H0136 | Sugar or sugar syrup added |
| H0150 | Color added |
| H0175 | Carbonated |
| H0362 | Fruit juice added |
| J0001 | Preservation method not known |
| K0003 | No packing medium used |
| M0194 | Can, bottle or jar |
| N0001 | Food contact surface not known |
| P0024 | Human consumer, no age specification |
| Z0112 | Food industry prepared |
Missing value, content not known.
Estimated value.
Estimated as a naturally occurring zero value, not analysed.
Product information, information from nutrition labelling/internet sites, 2009/2010.
Swedish National Food Agency. The food database, version 2023.06.13. Online version, soknaringsinnehall.livsmedelsverket.se
Livsmedelsverket. Snacks, sweets and beverages 2022 Analysis of nutrients. Livsmedelsverket, Uppsala, 2023. Online version, www.livsmedelsverket.se
Aggregated value from several food items
Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0)
Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g])
Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g])
Vitamin A activity calculated from retinol and beta-carotene (factor 1/6) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 6))
Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12))
Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60)
Sugar calculated as the sum of individual mono- and disaccharides (SUGAR[g] = ARAS[g] + FRUS[g] + GALS[g] + GLUS[g] + MANS[g] + RIBS[g] + XYLS[g] + LACS[g] + MALS[g] + SUCS[g] + TRES[g])
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Other acquisition type |
| Method type | Imputed/estimated, generic |
| Method | Other method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Water by difference (WATER[g] = 100 - PROT[g] - FAT[g] - CHO[g] - FIBT[g] - ALC[g]) |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Food label, product information |
| Method type | Imputed/estimated, generic |
| Method | Method not known |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Inductively Coupled Plasma Mass Spectrometry |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Niacin equivalents calculated from niacin and tryptophan (NIAEQ[mg] = NIA[mg] + TRP[mg] / 60) |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Carbohydrate, available calculated from sugar and starch (CHO[g] = SUGAR[g] + STARCH[g]) |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Food composition table |
| Method type | Imputed/estimated, generic |
| Method | Calculation method |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Calculations including conversion factors |
| Method | Vitamin A activity calculated from retinol and beta-carotene (factor 1/12) (VITA[µg] = RETOL[µg] + (CARTB[µg] / 12)) |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Best estimate |
| Acquisition type | Value created within host system |
| Method type | Summation from constituent components |
| Method | Salt equivalent calculated from sodium (NACL[g]=2.5*NA[mg]/1000.0) |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Weighted |
| Acquisition type | Value created within host system |
| Method type | Imputed/estimated, generic |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Below limit of quantification |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | High-performance liquid chromatography |
| Value type | Best estimate |
| Acquisition type | Food composition table |
| Method type | Analytical results |
| Method | Sugar calculated as the sum of individual mono- and disaccharides (SUGAR[g] = ARAS[g] + FRUS[g] + GALS[g] + GLUS[g] + MANS[g] + RIBS[g] + XYLS[g] + LACS[g] + MALS[g] + SUCS[g] + TRES[g]) |
| Value type | Weighted |
| Acquisition type | Independent laboratory |
| Method type | Analytical results |
| Method | Analytical method |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |
| Value type | Logical zero |
| Acquisition type | Value created within host system |
| Method type | Estimated according to logical deduction |
| Method | Imputation |